ThepExcel Logo
  • บทความ
    • Excel
      • Excel ทั่วไป
      • Excel Pivot Table
      • Excel Power Pivot
      • Power Query
      • Excel Array Formula
      • Excel VBA
      • Excel for Business
      • Excel and Maths
      • ฟังก์ชัน Excel ทั้งหมด
    • Power BI
      • Power Query
      • Data Model
      • DAX Formula
      • Power BI Report
    • Coding
      • Excel VBA
      • Python
      • Power Query M Code
    • AI
      • ChatGPT
      • Stable Diffusion
      • MidJourney
    • Highlights : บทความแนะนำ
    • คลิปวีดีโอ
  • อบรม
    • อบรมลูกค้าองค์กร
    • คอร์สออนไลน์ SkillLane
    • แนะนำวิทยากร
    • Excel/Power BI Skill Map
    • Quiz
  • Shop
    • คอร์สออนไลน์
    • สินค้าทั้งหมด
    • หนังสือเล่ม
    • E-Book
    • Cart
  • Download
    • Download ไฟล์จากเทพเอ็กเซล
    • ThepExcel-Mfx : M Code สำเร็จรูป
    • Date Table สำเร็จรูป
    • กราฟ My Skill
    • github.com/ThepExcel
  • รวม Link
    • รวม Link สอน Excel & Power BI ทั้งไทยและเทศ
    • รวม Link เกี่ยวกับ AI
    • รวม Link Coding
    • หนังสือแนะนำ
    • Facebook ThepExcel
    • YouTube ThepExcel
    • DAX Formatter
  • Contact
    • แนะนำ เทพเอ็กเซล (Thep Excel)
    • แนะนำวิทยากร : อาจารย์ ศิระ เอกบุตร (ระ)
    • นโยบายการคุ้มครองข้อมูลส่วนบุคคล (Privacy Policy)
  • Facebook
  • YouTube

Statistics with Excel ตอนที่ 3 : Discrete Probability Distribution

Discrete Probability Distribution

Categories 📂

Excel and Statistics

Tags 🏷️

discrete, distribution, statistics

ในตอนที่แล้วเราได้เรียนเกี่ยวกับเรื่องความน่าจะเป็นไปแล้ว ในตอนนี้เราจะมาพูดถึงเรื่องของ Probability Distribution หรือการแจกแจงความน่าจะเป็นกันครับ

Probability Distribution เป็นการทำให้เราเห็นภาพรวมถึงค่าของตัวแปรสุ่มที่เป็นไปได้ทั้งหมด และสามารถหาค่าความน่าจะเป็นของเหตุการณ์ที่เราสนใจได้อีกด้วย จึงถือได้ว่ามันเป็นหัวใจสำคัญของเรื่องสถิติเลยล่ะ

Probability Distribution สามารถแบ่งออกเป็น  2 ประเภทใหญ่ๆ คือ

  1. Discrete Probability Distributions : การแจกแจงความน่าจะเป็นแบบที่เหตุการณ์ที่สนใจนั้นสามารถนับแยกเป็นชิ้นๆ ได้(ไม่ได้มีค่าต่อเนื่องกัน) จึงสามารถ Plot กราฟเป็นแท่งๆ ได้เลย เช่น ใช้แจกแจงความน่าจะเป็นที่ที่ข้อสอบ 10 ข้อแล้วถูกต้อง 0,1,2,3,… 10 ข้อ ซึ่งจะได้กราฟ 10 แท่ง เป็นต้น ดังนั้นเราจะสามารถอ่านความน่าจะเป็นของเหตุการณ์ที่สนใจจากค่าแกน Y ได้เลยง่ายๆ
  2. Continuous Probability Distributions : การแจกแจงความน่าจะเป็นแบบที่เหตุการณ์ที่สนใจนั้นไม่สามารถนับเป็นชิ้นๆ ได้ เพราะเลขมีค่าต่อเนื่องกัน เช่น การแจกแจงของน้ำหนักของคนในบริษัท น้ำหนักมันอาจเป็น 63.43 kg แบบนี้ได้ ซึ่งเป็นค่าต่อเนื่อง ทำให้การอ่านความน่าจะเป็นของกราฟที่ Plot ออกมาต้องอ่านจาก “พื้นที่ใต้กราฟ” แทน

ในบทความนี้เราจะมาเรียนรู้เรื่อง Discrete Probability Distribution กันก่อนนะครับ

สารบัญ

  • Discrete Probability Distributions
    • Bernoulli Distribution
    • Binomial Distribution
    • Poisson Distribution
  • ตอนต่อไป
  • สารบัญซีรีส์ Statistics

Discrete Probability Distributions

เป็นการแจกแจงความน่าจะเป็นที่นับเป็นชิ้นๆ ได้ (ไม่ได้มีความต่อเนื่องกันจนแยกเป็นชิ้นไม่ได้) ซึ่งการที่เราเข้าใจ Distribution แบบนี้แล้ว จะทำให้เข้าใจที่มาที่ไปของ Distribution แบบ Continuous ที่เกิดขึ้นมากที่สุดในโลกที่มีชื่อว่า Normal Distribution ได้ด้วย

การแจกแจงความน่าจะเป็นแบบ Discrete ที่ผมจะขอพูดถึงมี 3 อัน คือ Bernoulli Distribution, Binomial Distribution, และ Poisson Distribution

Bernoulli Distribution

  • คือการแจกแจงความน่าจะเป็นที่มีผลลัพธ์ 2 แบบ คือ สำเร็จ (จริง) และ ล้มเหลว(เท็จ) โดยมีความน่าจะเป็นของความสำเร็จคือ P และล้มเหลวคือ (1-P)
  • มีค่า Mean = E(X)=P
  • มี Variance = var(X)= P*(1-P)

ตัวอย่าง การมั่วข้อสอบ 1 ข้อ (มี choice 4 อัน)

  • Mean = โอกาสที่จะสำเร็จ = 1/4 = 0.25
  • Variance = (0.25)*(1-0.25) = 0.25*0.75 = 0.1875

หมายเหตุ: Bernoulli Distribution ถือเป็นตัวพื้นฐานที่แทบใช้อะไรไม่ได้มากเพราะใช้ได้แค่กรณีมี Trial ครั้งเดียว แต่เดี๋ยวเราจะได้เรียนตัวถัดไปที่มีชื่อว่า Binomial Distribution ซึ่งใช้ได้กับกรณีที่มี Trial กี่ครั้งก็ได้ อันนี้สิเจ๋งจริง! (แปลว่าจริงๆ แล้ว Bernoulli Distribution ก็คือการใช้ Binomial Distribution แบบมี Trial 1 รอบนั่นเอง)

รูปการ Plot Bernoulli Distribution

เนื่องจากผลลัพธ์ของ Bernoulli Distribution เป็นไปได้แค่ 0=ไม่สำเร็จ, 1=สำเร็จ และมันมีแค่ Trial เดียว ดังนั้นผลลัพธ์ก็เลยมีแค่ 2 แท่งแบบ Basic ๆ นี่แหละ…

Binomial Distribution

  • เป็นการทดสอบคล้ายๆ Bernoulli ก่อนหน้านี้ แต่คราวนี้โดยทำซ้ำๆ กัน n ครั้ง
  • แต่ละครั้งมีผลลัพธ์ได้ 2 แบบ คือ สำเร็จ และ ล้มเหลว ความน่าจะเป็นของความสำเร็จ ในการทดลองแต่ละครั้งเท่ากัน คือ P
  • การทดลองแต่ละครั้งเป็นอิสระต่อกัน (Independent) นั่นคือ ผลการทดลองครั้งต่อไปไม่ได้ขึ้นกับผลในครั้งก่อนหน้า
  • ตัวอย่างเช่น มั่วข้อสอบ choice จำนวน 10 ข้อ แล้วดูว่าโอกาสถูก xx ข้อเป็นเท่าไหร่บ้าง

ดังนั้น Binomial Distribution เป็นการแจกแจงของจำนวนครั้งที่เกิดความสำเร็จ (X) ในการทดลอง Bernoulli trial ทั้งหมด n ครั้ง โดยมีความน่าจะเป็นของความสำเร็จคือ P

  • มีค่า Mean คือ n*P
  • มีค่า Variance คือ n * P * ( 1 – P )

เช่น มั่วข้อสอบ Choice จำนวน 10 ข้อ

  • มีค่า Mean คือ n*P = 10 * 1/4 = 2.5
  • มีค่า Variance คือ n * P * ( 1 – P ) = 10*1/4*3/4 = 1.875

การคำนวณ Binomial Probability หรือ ความน่าจะเป็นที่ความสำเร็จจำนวน X ครั้งจะเกิดขึ้น (ความน่าจะเป็นแต่ละแท่ง) มีสูตรดังนี้ 

b(x; n, P) = nCx * Px * (1 – P)n – x

สูตรดูเหมือนจะยุ่งๆ ยากๆ แต่จริงๆ แล้วที่มาที่ไปนั้น Make Sense ใช้ได้เลย เดี๋ยวมาดูการแทนค่ากันก่อน แล้วผมจะอธิบายที่มาของสูตรทีหลังนะครับ

ตัวอย่าง 1 : สมมติว่ามั่วข้อสอบ 10 ข้อ โอกาสที่ตอบถูก 6 ข้อพอดีคือเท่าไหร่?

  • มีการทดลอง 10 ครั้ง n= 10
  • จำนวนครั้งที่สำเร็จ X=6
  • โอกาสที่จะสำเร็จได้แต่ละครั้ง = P = 1/4
  • โอกาสที่ตอบถูก 6 ข้อพอดี = 10C6 * (1/4)^6 * (3/4)^4
  • โอกาสที่ตอบถูก 6 ข้อพอดี = 0.016222 = 1.62%

ซึ่งที่มาที่ไปของสูตร จริงๆ ก็มาจากเนื้อหาตอนที่แล้วนี่แหละ

จากสูตรนี้ 10C6 * (1/4)^6 * (3/4)^4 เดี๋ยวเรามาดูกันว่าที่มาที่ไปแต่ละตัวมาจากไหน

  • ทำข้อสอบ 10 ข้อ ตอบถูก 6 ข้อ แปลว่ามี 10 ขั้นตอน แล้วทำสำเร็จ 6 ขั้นตอน ไม่สำเร็จ 4 ขั้นตอน
  • ในครั้งที่สำเร็จ จำนวน 6 ครั้งนั้น แต่ละอันมีโอกาส 1/4 ดังนั้นโอกาสจะเป็น 1/4 คูณกัน 6 รอบ หรือ (1/4)^6
  • ในครั้งที่ไม่สำเร็จ จำนวน 4 ครั้งนั้น แต่ละอันมีโอกาส 3/4 ดังนั้นโอกาสจะเป็น 3/4 คูณกัน 4 รอบ หรือ (3/4)^4
  • มีรูปแบบ Pattern ทั้งหมด เหมือนการสลับเพื่อสร้างคำใหม่จาก S6ตัวF4 ตัว = 10!/6!4! = 10C6
  • Action ต้องทำต่อเนื่องกันดังนั้นก็เลยต้องเอาทุกตัวมาคูณกันทั้งหมด ก็เลยได้ว่า =10C6 * (1/4)^6 * (3/4)^4

แต่เรามี Excel ให้ใช้ ดังนั้นเราไม่ต้องมานั่งเขียนสูตรยากๆ เลย แต่ใช้ฟังก์ชัน BINOM.DIST ก็จะง่ายกว่ามากๆ 555

=BINOM.DIST(number_s,trials,probability_s,cumulative)
โดยที่ cumulative ถ้าเป็น TRUE คือโอกาสสะสมตั้งแต่ success เป็น 0 จนถึงจำนวนที่ต้องการ
โดยที่ cumulative ถ้าเป็น FALSE คือค่าโอกาสของจำนวน success ที่ต้องการตัวเดียว (ไม่สะสม)

ในที่นี่เราต้องการหาโอกาสที่ตอบถูก 6 ข้อพอดี ต้องใช้ cumulative ถ้าเป็น FALSE เพราะว่าไม่สะสม

=BINOM.DIST(6,10,1/4,FALSE) = 0.016222 = 1.62%

ตัวอย่าง 2 : สมมติเปลี่ยนคำถามเป็น ว่ามั่วข้อสอบ 10 ข้อ โอกาสที่ตอบถูกตั้งแต่ 6 ข้อขึ้นไป คือ เท่าไหร่?

แบบนี้คิดได้ 2 วิธี คือ เอาความน่าจะเป็นของถูก 6, 7, 8, 9, 10 ข้อ บวกกันให้หมด

ซึ่งจะเห็นว่าต้องคำนวณเยอะ เรามาใช้อีกวิธีนั่นคือ การคิดในมุมกลับด้วยหลักการ Complement จะง่ายกว่าเยอะ

นั่นคือเอา 1- ความน่าจะเป็นสะสมจนถึง 5 ข้อ โดยที่เราจะเขียนเป็น 6-1 จะได้รู้ว่า 5 มาจากไหน และเราจะใช้ Cumulative เป็น TRUE

=1 - BINOM.DIST(6-1,10,1/4,TRUE) = 0.01973 = 1.973% เท่ากันเลยแต่ใช้สูตรช่องเดียว

รูปการ Plot Binomial Distribution

ที่โอกาสสำเร็จ 25% จะเห็นว่ากราฟค่อนข้างเบี้ยวๆ (รูปนี้เรียกว่าเบ้ขวา เพราะมีหางยาวไปด้านขวา)

Binomial Distribution - Discrete Probability Distribution

แต่ถ้าโอกาส Success เป็น 50% จะทำให้ Shape สมมาตรเลย

เช่น โอกาส Success เป็น 75% จะทำให้ Shape เบ้ไปอีกทิศ (เรียกว่าเบ้ซ้าย เพราะหางยาวไปด้านซ้าย)

Poisson Distribution

เป็นการแจกแจงจำนวนครั้งของความสำเร็จที่เกิดขึ้น (X) ภายในขอบเขตหรือระยะเวลาที่กำหนด โดยมีจำนวนครั้งของความสำเร็จโดยเฉลี่ยภายในขอบเขตหรือระยะเวลาที่กำหนดดังกล่าว เท่ากับ μ (จริงๆ จะเอาสัญลักษณ์อะไรก็ได้นั่นแหละ)

  • มี Mean = μ
  • มี Variance = μ (เท่ากับ Mean)

Poisson Probability หรือความน่าจะเป็นที่จะเกิดความสำเร็จ x ครั้งเป๊ะๆ ในเวลาที่กำหนดมีดังนี้ 

P(x; μ) = (e-μ) (μx) / x!

เช่น ปกติโดยเฉลี่ยแล้วบริษัทจะขายรถได้ 2 คัน ภายใน 1 วัน ถามว่าความน่าจะเป็นที่จะขายรถได้ 3 คันเป๊ะๆ ในวันพรุ่งนี้เป็นเท่าไหร่?

P(x; μ) = (e^-μ) (μ^x) / x!
P(3; 2) = (2.71828^-2) (2^3) / 3!
P(3; 2) = (0.13534) (8) / 6
P(3; 2) = 0.1804 หรือ 18% นั่นเอง

ซึ่งใน Excel เราสามารถใช้ฟังก์ชัน POISSON.DIST ได้เลย

=POISSON.DIST(x,mean,cumulative) 

โดยที่ x คือจำนวนความสำเร็จที่ต้องการ mean คือ จำนวนความสำเร็จเฉลี่ย cumulative ถ้าเป็น TRUE คือโอกาสสะสมตั้งแต่ success เป็น 0 จนถึงจำนวนที่ต้องการ cumulative ถ้าเป็น FALSE คือค่าโอกาสของจำนวน success ที่ต้องการตัวเดียว (ไม่สะสม)

ดังนั้นข้อนี้ โอกาสจะขายรถได้ 3 คันเป๊ะภายใน 1 วันจะสามารถใช้สูตรได้ว่า

=POISSON.DIST(3,2,FALSE)  = 0.1804 หรือ 18% นั่นเอง

ถ้าข้อนี้ถามว่าโอกาสขายได้ตั้งแต่ 3 คันขึ้นไปภายใน 1 วันจะสามารถใช้สูตรได้ว่า

=1 - โอกาสสะสมที่ขายได้แค่ 2 คัน
=1 - POISSON.DIST(3-1,2,FALSE)
=0.72933 = 72.93%

รูปการ Plot Poisson Distribution

กรณี Success เฉลี่ยคือ 2

กรณี Success เฉลี่ยคือ 7

กรณี Success เฉลี่ยคือ 14

จะเห็นว่า Distribution จะเด้งสูงขึ้นมาที่ค่า Mean แล้วแผ่ออกไปทั้ง 2 ด้าน เป็นเหมือนภูเขา ยกเว้นว่าค่า Mean จะน้อยๆ ฝั่งซ้ายก็จะไปตันที่เลข 0 นั่นเอง

เอาล่ะสำหรับ Discrete Probability Distribution ที่ควรรู้จักก็ประมาณนี้แหละครับ หวังว่าจะเป็นประโยชน์สำหรับทุกท่านนะ

ตอนต่อไป

ในตอนต่อไปเราจะมาเรียนรู้เรื่องของ Continuous Probability Distributions ที่พบมากที่สุดในธรรมชาตินั่นก็คือ Normal Distribution นั่นเองครับ

สารบัญซีรีส์ Statistics

  • Statistics with Excel ตอนที่ 1 : ค่าสถิติที่สำคัญ
  • Statistics with Excel ตอนที่ 2 : ความน่าจะเป็น
  • Statistics with Excel ตอนที่ 3 : Discrete Probability Distribution
  • Statistics with Excel ตอนที่ 4 : Normal Distribution
  • Statistics with Excel ตอนที่ 5 : Central Limit Theorem
  • Statistics with Excel ตอนที่ 6 : Hypothesis Testing
  • การพยากรณ์ยอดขายใน Excel ด้วย Forecast และผองเพื่อน
  • ลองทำ Machine Learning ใน Excel เทคนิค K-Means Clustering แบบไม่ง้อ VBA
  • การทำ Simulation ด้วย Excel
แชร์ความรู้ให้เพื่อนๆ ของคุณ
471    
471    

ติดตามเทพเอ็กเซล

  • Facebook
  • YouTube

อบรมกับเทพเอ็กเซล

🔥 คอร์สใหม่ล่าสุด 🔥

การทำ Optimization ด้วย Excel Solver
สำหรับงานวางแผน
คอร์สออนไลน์ เทพเอ็กเซล
คอร์สออนไลน์ จากเทพเอ็กเซล ดูกี่รอบก็ได้
อบรม Excel / Power BI ให้องค์กรของคุณ

บทความล่าสุด

  • แนวทางฝึกฝน Excel ให้เก่งขึ้น
  • รวม Link เว็บ/เพจเกี่ยวกับ AI
  • วิธีกำหนดท่าทางแบบให้ได้ดั่งใจด้วย ControlNet ใน Stable Diffusion [Part4]
  • วิธีสั่ง Prompt และตั้งค่าใน Stable Diffusion ให้รูปสวยโดนใจ [Part3]
  • วิธีเรียกใช้งาน Model เจ๋งๆ ใน Stable Diffusion [ตอนที่2]
  • วิธีใช้งาน AI สร้างรูปสุดเจ๋งและฟรีด้วย Stable Diffusion ฉบับมือใหม่ [ตอนที่1]
  • 10 ไอเดีย เรียนรู้ Excel ผ่าน ChatGPT AI สุดเจ๋ง

บทความแนะนำ

🔥ฟังก์ชันทั้งหมดใน Excel 🔥

  • แกะเคล็ดวิชา Excel Wizard ในการแข่ง Speed Run Excel ระดับโลก
  • เจาะลึก CALCULATE ใน DAX แบบลึกสุดใจ : Part 1
  • Series สอนดึงข้อมูลจากเว็บ ด้วย Power Automate Desktop
  • สรุปการใช้ LAMBDA ฟังก์ชันที่ใช้สร้างฟังก์ชันใน Excel 365 และผองเพื่อน
  • วิธีใช้ Excel คำนวณระยะเวลาการทำงานรวม แถมระบุเวลาพักได้แบบยืดหยุ่น
  • วิธีจัดการข้อมูลแย่ๆ ด้วย Power Query ทั้งข้อมูลปนกัน ข้อมูลอยู่บนหัวตาราง
  • แยกข้อมูลที่อยู่สุดเน่า ด้วย Excel Power Query

Categories

Tags

ai collection concepts copy database Data Model data validation date dax dropdown error excel filter finance find format formula function game graph IF index intro inventory len link logic lookup match m code merge mid overview paste pivot power query right row solver sort speed split substitute table text time tips trim vba vlookup

Archives

  • April 2023 (3)
  • March 2023 (2)
  • February 2023 (2)
  • January 2023 (1)
  • October 2022 (1)
  • September 2022 (3)
  • August 2022 (3)
  • July 2022 (1)
  • June 2022 (3)
  • May 2022 (1)
  • April 2022 (2)
  • February 2022 (1)
  • December 2021 (2)
  • November 2021 (10)
  • September 2021 (2)
  • August 2021 (6)
  • July 2021 (2)
  • June 2021 (2)
  • May 2021 (10)
  • April 2021 (3)
  • March 2021 (3)
  • February 2021 (4)
  • January 2021 (8)
  • December 2020 (5)
  • November 2020 (13)
  • October 2020 (5)
  • September 2020 (11)
  • August 2020 (4)
  • July 2020 (13)
  • June 2020 (17)
  • May 2020 (16)
  • April 2020 (16)
  • March 2020 (10)
  • February 2020 (15)
  • January 2020 (16)
  • December 2019 (4)
  • November 2019 (3)
  • October 2019 (9)
  • September 2019 (1)
  • August 2019 (7)
  • June 2019 (3)
  • May 2019 (9)
  • April 2019 (9)
  • March 2019 (2)
  • February 2018 (1)
  • January 2018 (3)
  • November 2017 (3)
  • August 2017 (1)
  • July 2017 (1)
  • June 2017 (1)
  • May 2017 (6)
  • April 2017 (6)
  • March 2017 (7)
  • February 2017 (1)
  • January 2017 (2)
  • December 2016 (1)
  • October 2016 (2)
  • September 2016 (3)
  • August 2016 (2)
  • July 2016 (2)
  • June 2016 (1)
  • May 2016 (1)
  • April 2016 (1)
  • March 2016 (2)
  • February 2016 (1)
  • January 2016 (2)
  • December 2015 (2)
  • November 2015 (5)
  • October 2015 (3)
  • June 2015 (2)
  • May 2015 (1)
  • April 2015 (26)
  • January 2015 (1)
  • December 2014 (1)
  • November 2014 (2)
  • October 2014 (1)
  • September 2014 (2)
  • August 2014 (1)
  • June 2014 (1)
  • May 2014 (1)
  • April 2014 (3)
  • March 2014 (3)
  • February 2014 (12)
  • January 2014 (7)
  • December 2013 (2)
  • November 2013 (8)
  • October 2013 (2)

เทพเอ็กเซล : Thep Excel

copyright © 2022

  • Facebook
  • YouTube
เว็บไซต์นี้ใช้คุกกี้ (Cookies)
บริษัท เทพเอ็กเซล จำกัด ให้ความสำคัญต่อข้อมูลส่วนบุคคลของท่าน เพื่อการพัฒนาและปรับปรุงเว็บไซต์รวมถึงสินค้าและบริการต่างๆ หากท่านใช้บริการเว็บไซต์นี้ โดยไม่มีการปรับตั้งค่าใดๆ แสดงว่าท่านยินยอมที่จะรับคุกกี้บนเว็บไซต์ และนโยบายสิทธิส่วนบุคคลของเรา
ตั้งค่าคุกกี้ยอมรับทั้งหมดอ่านเพิ่มเติม
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT